
Quick reference manual
for the SPHInX DFT program

Christoph Freysoldt, freysoldt@mpie.de

August 21, 2017

Contents
1 Introduction 3

1.1 About . 3
1.2 sphinx invocation . 3
1.3 Units . 3

2 The SPHInX parser 3
2.1 Overview . 3
2.2 Expressions . 4
2.3 Included files . 5
2.4 The format statement. std files. 5

3 Overview on the input file for DFT calculations 5
3.1 The structure group . 6

3.1.1 The species group . 7
3.1.2 The atom group . 8
3.1.3 symmetry group . 8

3.2 The basis group . 9
3.2.1 The kPoint group . 10
3.2.2 The kPoints group . 10
3.2.3 The from group . 11
3.2.4 The to group . 11

3.3 The pawPot group . 12
3.4 The PAWHamiltonian group . 13

3.4.1 The vExt group . 14
3.4.2 The xcMesh group . 14

3.5 The spinConstraint group . 14
3.6 The initialGuess group . 15

3.6.1 The waves group . 16
3.6.2 The lcao group . 16
3.6.3 The rho group . 16
3.6.4 The atomicSpin group 17
3.6.5 The charged group . 18
3.6.6 The occupations group 18
3.6.7 The exchange group . 19

3.7 The pseudoPot group . 19
3.8 The PWHamiltonian group . 20
3.9 The main group . 21

4 Electronic loop 22
4.1 scfDiag: iterative diagonalization + density mixing 22

4.1.1 The CCG group . 25
4.1.2 The blockCCG group . 25
4.1.3 The preconditioner group 26

4.2 CCG: direct minimization . 27

1

5 Geometry optimizers 28
5.1 The QN group . 28

5.1.1 The bornOppenheimer group 29
5.2 The linQN group . 29
5.3 The ricQN group . 30

5.3.1 The ric group . 31
5.4 The extControl group . 32

6 Output 33
6.1 energy.dat: total energies . 33
6.2 residue.dat: density residues . 34
6.3 eps.dat: eigenvalues . 34
6.4 rho.sxb: density (binary) . 34
6.5 waves.sxb: wave functions (binary) 34
6.6 relaxedStr.sx: final atomic structure 34
6.7 relaxHist.sx: geometry optimization history 34
6.8 energy-structOpt.dat: geometry optimization energies 34
6.9 fftwisdom.dat: FFTW plans . 35

Index 36

2

1 Introduction

1.1 About
SPHInX is a C++ programming library for developing efficient physics codes.
It’s dominant feature is a plane-wave density-functional theory (DFT) code
named sphinx. This document is a short, non-tutorial manual for the DFT
program sphinx. Other features of sphinx are not described here. In particular,
k · p, EXX, and tight-binding, are not covered.

1.2 sphinx invocation
sphinx reads its input from a main input file, usually called ‘input.sx’. Its
format is described in Sec. 3. sphinx produces output in several dedicated files
(see Sec. 6), but the main output comes on stdout (i.e. the screen). sphinx can
be asked to duplicate (or redirect) its output into a log file. sphinx – like all
SPHInX executables – can take options on the command line that control some
of its global behavior.

Option argument description
--help show all the available options
--log create a log file
--quiet don’t produce output on stdout
--input filename input file (default: input.sx)

If SPHInX has been compiled with the FFTW library for the fast Fourier
transforms (FFTs), there are two additional options to access the planning mode
of FFTW (--fastfft and --wisdom).

1.3 Units
SPHInX uses mostly atomic units: bohr for coordinates, Hartree atomic units
for energies. Some exceptions exist, e.g. for plane-wave cutoffs (Rydberg),
electronic temperature (eV), eigenvalues (eV), ...

2 The SPHInX parser

2.1 Overview
The input file format is best explained starting from an example:

3

�
basis {

eCut = 20 ; // Ry
kPoint {

coords = [1/2 , 1 / 2 , 1 / 2] ;
weight = 1 ;
relative ;

}
folding = 4 ∗ [1 , 1 , 1] ;

}
� �
The SPHInX input format is a structured, hierarchical format with a C-like

syntax. It consists of named groups and parameters. Parameter and group
names are case-sensitive.

Groups. The content of a group (such as basis) is enclosed in curly brackets
{}. Groups may contain parameters, and other groups.

The order of unique groups is not important. Groups that may appear
multiple times, or groups that describe an action of the code (notably in the
main group) are processed in the order of appearance.

Parameters. Parameters (such as eCut) are assigned values with the
equal sign. Parameter assignments must be followed by a semicolon (;). Some
parameters/variables may be a vector (or a list), for instance coords in the
example above. The vector elements are comma-separated and enclosed by
square brackets []. Parameters may expect string values. The string is enclosed
in double quotes ("). Parameters that expect filenames may be enclosed by <>
to look for the files in the search path. Enclosure by double quotes looks for
them in the current directory.

Flags. Flags are special parameters, that normally do not carry a value. A
flag (e.g. relative) is set by specifying its name, followed by a semicolon. Flags
are unset by assigning the value 0.

White space. White space (including tabs and newlines) can be added quite
freely, except within words, numbers, etc.

Comments. Comments can be added by the // and /* */ syntax. A //
comment extends until the rest of the line.1 A /* */ comment omits everything
between the /* and */ markers.

2.2 Expressions
The SPHInX parser supports basic algebraic expressions, such as adding, sub-
tracting, multiplying etc. All numbers are changed to double precision when

1Instead of // one can also use # (like in shell) or % (like in LaTeX).

4

doing so, i.e., 1/2 is equivalent to 0.5. Some mathematical functions (sqrt, cbrt
(cubic root), sin, cos, exp, log) are available. At the top level, additional vari-
ables may be set and used in algebraic expressions. Strings can be concatinated
with +.

2.3 Included files
The input file may include other files via the include statement.�
include <parameters . sx >;
include " s t a r t S t r u c t u r e . sx " ;
� �

Similar to C/C++, double quotes indicate that the file is expected in the
current directory (of execution), while <> indicates to look for the file in the
parser’s search path. The file parameters.sx (located in share/sphinx/) con-
tains a large number of predefined keys that may offer mnemonic names for
some (numeric) settings. It should always be included.

2.4 The format statement. std files.
Each input file should begin with a format statement, e.g. for PAW�
format paw ;
� �

What is the role of this statement? The SPHInX input file is read by the
SPHInX parser, and validated against a syntax type definition (std). The rele-
vant std file is selected by the format statement in the input file (here, it would
load ‘paw.std’. The std files are located2 in share/sphinx/std/. The std files
themselves have a similar format as the actual input file, but define the type
expected for each parameter, as well as mutual exclusions, range limits, etc.
The std files can be an additional ressource for discovering what SPHInX offers.
The std files make heavy use of the include feature.

3 Overview on the input file for DFT calculations
A typical input file for PAW will look like this:

2within the sphinx/src folder in the source tree, and within the installation path when
installed

5

�
format paw ;
include <parameters . sx >;

structure { . . . }
basis { . . . }
pawPot { . . . }
PAWHamiltonian { . . . }
initialGuess { . . . }
main { . . . }
� �

The individual groups are described in the other sections of this manual.
They define the atomic structure (structure), the plane-wave basis set and
k-points (basis), the PAW potentials to be used (pawPot), other settings of
the PAW Hamiltonian such as the xc functional (PAWHamiltonian), how to set
up the starting density and wavefunctions (initialGuess), as well as the type
of calculation (geometry optimization, single-point calculation, band structure,
. . .) in the main group.

A typical input file for norm-conserving pseudopotentials will look like this:�
format sphinx ;
include <parameters . sx >;

structure { . . . }
basis { . . . }
pseudoPot { . . . }
PWHamiltonian { . . . }
initialGuess { . . . }
main { . . . }
� �

Quite similar, no? The difference is in the format, the pseudoPot and
PWHamiltonian groups.

3.1 The structure group
The structure group specifies the atomic positions in SPHInX format.

Example:

6

�
structure {

ce l l = 10.2 ∗ [[0 , 1/2 , 1/2] ,
[1/2 , 0 , 1/2] ,
[1/2 , 1/2 , 0]] ;

species {
element="Si " ;
atom { coords = [0 , 0 , 0] ; relative ; }
atom { coords = [1/4 , 1 / 4 , 1 / 4] ; relative ; }

}
}
� �

The following parameters may be set:
parameter description
movable (flag) allow atoms to move. Default: all atoms are

movable, unless any movable flag is used for any
species/atom.

movableX (flag) allow atoms to move in the x direction. Default:
movable, unless movableY or movableZ are used.

movableY (flag) allow atoms to move in the x direction. Default:
movable, unless movableX or movableZ are used.

movableZ (flag) allow atoms to move in the x direction. Default:
movable, unless movableX or movableY are used.

cell (required) The unit cell (in bohr). This is a list of the
three basis vectors in Cartesian coordinates.

The movable flags are applied hierarchically. Settings at the structure level
can be overridden at the species or atom level. Disabling a movable flag of a
surrounding group is achieved by setting to 0, e.g. movableY = 0;

The structure group must contain at least one species group. It may
contain a symmetry group.

3.1.1 The species group

The species group defines atomic positions for one chemical species. Atoms
must be sorted by their chemical species.

7

�
species {

element="Al " ;
atom { . . . }
atom { . . . }

}
species {

element="O" ;
atom { . . . }
atom { . . . }
atom { . . . }

}
� �
The species group may contain the movable, movableX, movableY, movableZ

parameters as specified above. In addition it may contain the element param-
eter to indicate the chemical symbol, enclosed by double quotes.

The species group must contain at least one atom group.

3.1.2 The atom group

The atom group defines atomic positions for one atom. Atoms must be sorted
by their chemical species.

The atom group may contain the movable, movableX, movableY, movableZ
parameters as specified above in Sec. 3.1. In addition, the following parameters
may be set:

parameter description
coords (required) The atomic coordinates as a 3-vector. Un-

less the relative flag is employed, the coordinates are
Cartesian (in bohr).

relative (flag) The coordinates are given relative to the unit cell
vectors.

movableLine (optional) The movement of the atom is restricted to
a line. The value gives the direction of the line as a
3-vector.

label (optional string) Assign a label (or rather a tag) to this
atom. If labels are used, atoms with different labels are
considered inequivalent. Think of spin configurations
for a use-case.

3.1.3 symmetry group

The symmetry group (within the structure group) defines the rotational sym-
metries of the system around the origin of the coordinate system. If not given,
the symmetries are determined automatically. However, non-chemical degrees
of freedom (such as spins) may break the symmetry. As all forces / displace-
ments are symmetrized, such a situation may require to set the symmetries

8

by hand. Alternatively, giving an empty symmetry group switches off
symmetrization.

The symmetry group contains multiple operator groups. Each operator
group contains the parameter S, a Cartesian rotation matrix given row-wise.
The symmetries must form a group.

Example:�
symmetry {

// Symmetry Number 1 , E
operator { S = [[1 . 0 0 0000 , 0 . 0 0 0000 , 0 . 0 0 0000] ,

[0 . 0 00000 , 1 . 0 00000 , 0 . 0 00000] ,
[0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 1 . 0 0 0 0 0 0]] ; }

// Symmetry Number 2 , m [0 ,0.707107 ,−0.707107]
operator { S = [[1 . 0 0 0000 , 0 . 0 0 0000 , 0 . 0 0 0000] ,

[0 . 0 00000 , 0 . 0 00000 , 1 . 0 00000] ,
[0 . 0 0 0 0 0 0 , 1 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0]] ; }

}
� �
The best way to set up a reduced symmetry group is to use

sxstructsym --printsym -i input.sx

and then grep the symmetry group from the output and remove the unwanted
symmetries.

3.2 The basis group
The basis group defines the plane-wave basis and the k-points, and optionally
adjusts FFT mesh sizes.

Example:�
basis {

eCut = 20 ; // Ry
kPoint {

coords = [1/2 , 1 / 2 , 1 / 2] ;
weight = 1 ;
relative ;

}
folding = 4 ∗ [1 , 1 , 1] ;

}
� �
The basis group must contain a kPoint (Monkhorst-Pack meshes) or a

kPoints (bandstructures) group.
The following parameters may be set:

9

parameter description
eCut (required) Plane-wave cutoff for wavefunctions (in Ry-

dberg)
gCut (optional) Override cutoff for the density G-basis (de-

faults to 4× eCut)
folding

Monkhorst-Pack folding. 3-vector of integers. Defaults
to [1,1,1]

mesh (optional) FFT mesh. 3-vector of integers. Default:
automatic

meshAccuracy (optional) FFT mesh accuracy, relative to the default.
Default: 1, i.e. sufficient to hold 2× the wavefunction
plane-waves to avoid wrap-around errors

saveMemory (flag) Do not store phase-factor for each atom. This
may make the code marginally slower, but save some
RAM.

3.2.1 The kPoint group

The kPoint group defines the offset of the Monkhorst-Pack mesh. For this,
one (or more) k-points are defined within the Brillouin zone. The complete
zone with all the k-points in it (usually 1) is then shrinked by a factor folding
in each direction; and the originally Brillouin zone is filled with copies of this
shrinked zone. Afterwards, symmetry is used to remove redundant k-points.

Alternatively, all k-points can be specified via kPoint groups, assigning
weights as desired.

Example:�
kPoint { coords = [1/2 , 1 / 2 , 1 / 2] ; relative ; }
� �

The following parameters may be set:
parameter description
relative (flag) Coordinates are relative. This should be usually

set.
coords (required) The coordinates. If relative flag is not given,

the units are 1/bohr.
weight (optional) Give a weight to this k-point. Weights must

sum to 1. Default: 1/number of k-points.
Typical offsets are 0 or 1/2. For decoupling across vacuum regions with

folding=1, use 1/4 to minimize band dispersion effects.

3.2.2 The kPoints group

The kPoints group is used to conveniently define band structure paths. It
contains a sequence of from and to groups. Note: Band structure paths are
subject to Monkhorst-Pack folding, so set folding to [1,1,1] or leave it out.

Example:

10

�
kPoints {

dK = 0 . 0 1 ;
// −−− f c c l a t t i c e
// L po in t
from { coords=PI/aLat ∗ [1 , 1 , 1] ; label="L" ; }
// Gamma po in t
to { coords=[0 , 0 , 0] ; label="\xG" ; }
// X po in t
to { coords=[2 ∗ PI/aLat , 0 , 0] ; label="X" ; }

}
� �
The group must contain a from, and at least one to group.
The following parameters may be set:
parameter description
relative (flag) Coordinates are relative.
dK (optional) Set the number of intermediate k-points such

that the distance is at most dK (in 1/bohr).

3.2.3 The from group

The from group (within the kPoints group) adds a single k-point at the desired
position. It may be used multiple times.

The following parameters may be set:
parameter description
relative (flag) Coordinates are relative.
coords (required) The coordinates. If relative flag is not given,

the units are 1/bohr.
label (optional) String. Give a label to this k-point.

3.2.4 The to group

The to group (within the kPoints group) adds a line of k-points from the
previous one to a new position. The number of points is set directly with
nPoints or indirectly via dK.

The following parameters may be set:
parameter description
relative (flag) Coordinates are relative.
coords (required) The coordinates. If relative flag is not given,

the units are 1/bohr.
label (optional) String. Give a label to this k-point.
dK Set maximum k-point distance.
nPoints Specify number of points to add. The final one will be

at coords.

11

3.3 The pawPot group
The pawPot group defines the PAW potentials, by a sequence of species groups.
The order of species must agree with the structure group.

Example:�
pawPot {

species {
name = "Nitrogen " ;
potType = "AbInit " ;
element = "N" ;
potential="N_LDA_abinit . paw" ;
lMaxRho=2;
angularGrid=4;

}
species {

name = "Hydrogen " ;
element="H" ;
. . .

}
}
� �

The group must contain one species group per species. Within the species
group, the following parameters are commonly set:

parameter description
name (required string) English name of the element
element (optional string) Chemical symbol
potential (required filename) Name of the potential file.
potType (required string) Type of the potential file. May be

"AbInit", "AtomPAW", "CPPAW", or "VASP".

The following parameters within the species group allow experimenting with
some details.

parameter description
lMaxRho (optional) Truncate the spherical expansion of densities

(and compensation charges) at this l.
angularGrid (optional integer) Choose a different angular grid for xc

calculation in the PAW sphere. Larger is finer. Default
is 7 (110 points).

nRadGrid (optional integer) Interpolate to a different radial grid.
checkOverlap (flag) Check that PAW norm is garantueed to be posi-

tive definite in the limit of large cutoffs. This is on by
default. Some problematic PAW potentials may fail the
check, but work normally in some circumstances, so you
can switch off the check here.

12

3.4 The PAWHamiltonian group
The PAWHamiltonian group defines the DFT functional, the number of empty
states, the Fermi smearing, and some other settings.

Example:�
PAWHamiltonian {

nEmptyStates = 10 ;
ekt = 0 . 0 2 ;
xc = LDA_PW;

}
� �
The following common parameters may be set:
parameter description
xc (required) xc functional to be used. Constants are de-

fined in parameters.sx. See below.
ekt (optional) Fermi-Dirac smearing in eV. Should be 0 for

semiconductors.
nEmptyStates (optional) number of empty states. Remember to scale

with system size! Defaults to zero, which is OK for
semiconductors, and catastropic for metals.

nExcessElectrons (optional) Number of extra electrons (= minus charge).
Can be fractional.

spinPolarized (flag) Run a collinear spin-polarized calculation.
dipoleCorrection (optional) Use the dipole correction for slab systems.

The in-plane lattice must be perpendicular to the z-axis,
and the third basis vector must be aligned with the z-
axis. For charged calculation, this requests the general-
ized dipole correction, which may need some care for ini-
tializing the charge (see charged in the initialGuess
group).

zField (optional) Use an additional electric field along z when
using the dipole correction (atomic units).

Available xc functionals The xc parameter can be LDA_PW (10), i.e. the
Perdew-Wang parametrization of LDA, or PBE (1). Perdew-Zunger LDA (0)
works, but is not recommended because the parametrization is discontinuous,
limiting the convergence in some cases. If you need other functionals, contact
freysoldt@mpie.de. Hybrid functionals are still experimental, and slow.
The following parameters allow experimenting with some details.

parameter description
omegaHSE (optional) Change the ω screening length of HSE
alphaHybrid (optional) Change the non-loccal exchange mixing pa-

rameter of hybrid functionals.

13

The PAWHamiltonian group may additional contain the vExt and xcMesh groups
to set an external potential and the mesh for xc calculation, respectively.

3.4.1 The vExt group

The vExt group in the PAWHamiltonian or PWHamiltonian group defines an
external potential.

Example:�
PAWHamiltonian {

. . .
vExt { f i l e="sawtooth . sxb " ; }

}
� �
It contains a single parameter, file, which contains the filename of the

netcdf-type potential file to be used. The format of that file is like for a density
(see Sec. 6.4).

3.4.2 The xcMesh group

The xcMesh group defines a specific FFT mesh for the calculation of the xc
functional. It may be set with either of the following parameters (cf. the mesh
definition in the basis group). The default is to double the density mesh,
roughly equivalent to meshAccuracy=2.

The xcMesh group may appear in some groups other than the Hamiltonian
to temporally override the xc mesh: scfDiag.CCG, blockCCG, CCG.

parameter description
eCut Plane-wave cutoff for wavefunctions (in Rydberg). The

xc mesh will be sufficient to hold 2× this cutoff.
mesh FFT mesh. 3-vector of integers.
meshAccuracy FFT mesh accuracy, relative to the default. Default: 1,

i.e. sufficient to hold 2× the wavefunction plane-waves
to avoid wrap-around errors

3.5 The spinConstraint group
The optional spinConstraint group defines atomic spin constraints for PAW
calculations. They can be set via atomic labels, or read in for all atoms from
an external file.

Note: Atomic spins refer to the spin density inside the PAW cutoff sphere
and are not identical to the definition used for setting up spin configurations
from complete atoms in initialGuess.atomicSpin.

Example:

14

�
spinConstraint {

label ="No . 1 " ;
constraint = 2 ;

}
spinConstraint {

label ="No . 2 " ;
constraint = −2.5;

}
� �
The following parameters may be set:
parameter description
label The present constraint applies to atoms with the given

label.
constraint Value of the desired atomic spin
file Read all spin constraints from this file.

If the constraints are read from a file, there must be one number per atom.
If not all atoms are constrained, the number is to be replaced by ‘X’, followed
by a newline. For instance,

1
1
X
-2

for a four-atom calculation would constrain the spins of the first two atoms to
a value of 1, the last one (no. 4) to a value of -2, and have no spin constraint
on atom 3.

3.6 The initialGuess group
In order to start a DFT calculations, one must set up an initial guess for the
density and for the wave functions. The initialGuess group defines how this
is done, as well as a few other settings (such as keeping the waves on disk to
save RAM).

Example:�
initialGuess {

waves { lcao {} }
rho { atomicOrbitals ; }

}
� �
The default is to set up the density from a superposition of atomic densities,

and the wave-functions from a single-step LCAO calculation, using the atomic
valence orbitals [1]. This works exceptionally well. If you want to finetune
the behavior, the initialGuess group must contain a waves or a rho group.
Otherwise, you may omit the waves and rho groups to get the default behavior.

15

Additionally, the initialGuess group may contain an occupations group to
set up initial occupations (notably when keeping them fixed), and an exchange
group for hybrid functionals.

The following parameters may be set:
parameter description
noWavesStorage (flag) Do not save wavefunctions after the initial guess
noRhoStorage (flag) Do not save the density after the initial guess.

3.6.1 The waves group

The waves group defines the strategy for setting up the initial waves. The major
strategies are LCAO (best), reading from a file (excellent, if you have one), or
random. To use LCAO, you must include an lcao group.

The following parameters may be set:
parameter description
file (optional) File name for reading in the initial guess from

a previous calculation.
random (flag) Initialize with random numbers.
keepWavesOnDisk (flag) Keep waves on disk, load only a single k-point at

each time. May save a lot of RAM, but can be quite a
bottleneck on small systems.

3.6.2 The lcao group

The lcao group within the initialGuess.waves group finetunes the LCAO
calculation, if necessary. Notably, you can iterate the LCAO calculation to
self-consistency. This is generally no good idea.

parameter description
maxSteps (optional) Max. number of steps. If 0 or 1, the initial

density will not be updated.
dEnergy (optional) Energy convergence criterium

In addition to these, the lcao group supports all the mixer settings (mixingMethod,
nPulaySteps, spinMixing, rhoMixing, preconditioner group) of the scfDiag
group (Sec. 4.1).

3.6.3 The rho group

The rho group defines the strategy for the initial density. This can be a super-
position of atomic densities, from a file, from the wave functions (if read from
a file), or random.

The following parameters may be set:

16

parameter description
file Read density from this file.
fromWaves (flag) Compute from the wave functions (which must be

from file in this case).
random (flag) Request random density
atomicOrbitals (flag) Superposition of atomic densities
spinMoment (optional) When from atomic densities, apply a global

spin polarization.
If atomicOrbitals is chosen, one may set up a spin configuration by using

atomicSpin groups.
For charged calculations, one may specify an initial localization of charge in

the charged group.

3.6.4 The atomicSpin group

The atomicSpin group (within the initialGuess.rho group) defines spin po-
larization for the initial guess on an per-atom basis when the initial density is set
up from atoms. Post-polarizing an external density is not possible at present.
Atoms can be identified per label (one atomicSpin group per label), or from an
external file with spins for all atoms.

Example:�
aLat = 5 . 3 5 ;
structure {

include <s t r u c t u r e s / sc . sx >;
species { element="Fe " ;

atom { coords=[0 , 0 , 0] ; relative ; label="A" ; }
atom { coords=[1/2 , 1/2 , 1 / 2] ; relative ;

label="B" ; }
}

}
initialGuess {

rho {
atomicOrbitals ;
atomicSpin { label="A" ; spin=2; }
atomicSpin { label="B" ; spin=−2; }

}
}
� �

The following parameters may be set:
parameter description
spin The desired spin moment value.
label For which atoms does this spin apply?
file (excludes spin and label) Read atomic spins from this

file (one spin per line), one per atom, in sequential order.

17

3.6.5 The charged group

The charged group (within the initialGuess.rho group) defines the localiza-
tion of initial charge. This may be a Gaussian charge, or a sheet-layer charge
along z (for charged slabs) with a Gaussian profile.

Example:�
initialGuess {

rho {
atomicOrbitals ;
charged { charge=1; coords=[0 , 0 , 1 3 . 2] ; beta=2; }

}
}
� �

The following parameters may be set:
parameter description
charge (required) The classical charge (i.e. -nExcessElectrons

from the PAWHamiltonian or PWHamiltonian group).
beta (optional) Gaussian broadening
z Request a sheet charge at this z
coords Request a Gaussian charge at this position (in bohr).

Multiple charges can be set up. There is no check if the resulting density
has the correct number of electrons.

3.6.6 The occupations group

The occupations group within the initialGuess group defines the initial oc-
cupations. This makes sense if the density is computed from wave functions, or
if the occupations are going to be fixed at these values.

Example:�
initialGuess {

. . .
occupations {

bands { range=[1 , 10] ; focc=2; }
kPoints { values=[1 , 3] ;

bands { values=[10] ; focc=0; }
bands { values=[11] ; focc=2; }

}
}

}
� �
One can specify selected sets of states by nesting the following groups:

kPoints, spin, bands. Each of these groups selects one or more indices (start-
ing at 1) from the specified index type (i.e. k-points, spins, states) by one of
the following two parameters:

18

parameter description
values (list of integers) Specifically list the indices affected.
range (list of 2 integers) Specify start and end index.

The possible nestings are

• kPoints { spin { bands { ... focc=...; } } }

• kPoints { bands { ... focc=...; } }

• spin { bands { ... focc= ...; } }

• bands { ... focc=...; }

The innermost loop must set the focc parameter to the desired occupation.
If an outer group is omitted, the settings apply to all indices of that type (e.g. no
kPoints group = all k-points). The groups are processed in order of appearance,
i.e., later groups override the previous settings, if the index ranges overlap.

In the above example, the first bands group sets the occupations of bands
1–10 at all k-points to 2. Then, we change the occupation at k-points 1 and 3,
to have zero occupation in band 10 and an occupation of 2 for band 11.

3.6.7 The exchange group

Note: hybrid functionals are experimental and slow.
The exchange group allows to set waves for the non-local exchange operator

at the initialization stage. This is necessary if you want to initialize the waves
from an LCAO calculation. The exchange group contains a single parameter,
file, which contains the filename of the waves file to be used.

Example:�
initialGuess {

exchange { f i l e="waves−pbe . sxb " ; }
rho { f i l e="rho−pbe . sxb " ; }
waves { lcao {} }

}
� �
3.7 The pseudoPot group
The pseudoPot group defines the norm-conserving pseudopotentials by a se-
quence of species groups. The order of species must agree with the structure
group.

Note: PAW and norm-conserving pseudopotentials cannot be mixed. Using
pseudoPot requires to use PWHamiltonian to define the Hamiltonian.

Example:

19

�
pseudoPot {

species {
potential = " a l . cp i " ;
name = "Aluminum" ;
element = "Al " ;
valenceCharge = 3 ;
lMax = d ;
lLoc = d ;
lcaoOrbitals = [s , p , d] ;
atomicRhoOcc = [2 , 1 , 0] ;
rGauss = 1 ;
reciprocalMass = 26 . 9 8 ;
dampingMass = 0 . 7 ;
ionicMass = 26 . 9 8 ;

}
}
� �

The group must contain one species group per species. Within the species
group, the following parameters may be set:

parameter description
name (required string) English name of the element
element (optional string) Chemical symbol
potential (required filename) Name of the potential file.
valenceCharge (required) Valence charge.
lMax (required) Max. l-component of the pseudopotential.
lLoc (required) Select the local l-component.
lcaoOrbitals (required) Which orbitals should be used for lcao initial-

ization. Note: s,p,d, and f are predefined constants
in parameters.sx.

rGauss (required) Broadening of compensation charge, usually
1.

atomicRhoOcc (required) Occupation numbers for charge initialization.
reciprocalMass (required) Mass of the ion.
dampingMass (required,currently unused). Damping for damped-

Newton geometry optimization.
ionicMass (required) Mass of the ion.

Note: The appearance of two masses, as well as the lack of default param-
eters is a historic feature (mistake?) and may be changed in future versions.

3.8 The PWHamiltonian group
The PWHamiltonian group defines the DFT functional, the number of empty
states, the Fermi smearing, and some other settings.

Example:

20

�
PWHamiltonian {

nEmptyStates = 10 ;
ekt = 0 . 0 2 ;
xc = LDA;

}
� �
The following common parameters may be set:
parameter description
xc (required) xc functional to be used. Constants are de-

fined in parameters.sx. See below.
ekt (optional) Fermi-Dirac smearing in eV. Should be 0 for

semiconductors.
nEmptyStates (optional) number of empty states. Remember to scale

with system size! Defaults to zero, which is OK for
semiconductors, and catastropic for metals.

nExcessElectrons (optional) Number of extra electrons (= minus charge).
Can be fractional.

spinPolarized (flag) Run a collinear spin-polarized calculation.
dipoleCorrection (optional) Use the dipole correction for slab systems.

The in-plane lattice must be perpendicular to the z-axis,
and the third basis vector must be aligned with the z-
axis. For charged calculation, this requests the general-
ized dipole correction, which may need some care for ini-
tializing the charge (see charged in the initialGuess
group).

zField (optional) Use an additional electric field along z when
using the dipole correction (atomic units).

Available xc functionals The xc parameter can be LDA_PW (10), i.e. the
Perdew-Wang parametrization of LDA, or PBE (1). Perdew-Zunger LDA (0)
works, but is not recommended because the parametrization is discontinuous,
limiting the convergence in some cases. If you need other functionals, contact
freysoldt@mpie.de.

The PWHamiltonian group may additional contain the vExt and xcMesh
groups to set an external potential and the mesh for xc calculation, respectively.

3.9 The main group
The main group selects and controls the algorithms after startup during the
main part of the calculation. The can be divided into two categories: electronic
minimization (Sec. 4) and geometry optimization (Sec. 5). The main group can
contain a single algorithm, or a sequence of them, which are then executed in
order of appearance.

All self-consistent DFT calculations must employ some algorithm to com-
pute the electronic wavefunctions and density for a given geometric structure. If

21

additionally the atomic positions are altered according to the calculated forces,
electronic minimization becomes the inner loop. Consequently, the electronic
minimizers appear in the bornOppenheimer group of the geometry optimizers.
Electronic minimizers may appear as a direct subgroup of main. It may some-
times be useful to select a different set of electronic minimization settings for
the initial phase, if the initial guess is not good enough, and then use other
settings (less robust, more efficient) later on.

Example:�
main {

// −−− ge t a b e t t e r s t a r t i n g guess wi th
// sma l l rhoMixing
scfDiag {

dEnergy=1e−4;
rhoMixing=0.3;
maxSteps=100;

}
// −−− op t imize geometry
linQN {

dEnergy = 1e−6;
maxSteps=50;
bornOppenheimer {

scfDiag {
dEnergy = 1e−8;
rhoMixing=1;

}
}

}
}
� �

The group must contain one or more electronic minimizer (scfDiag, CCG) or
geometry optimizer (QN, linQN, ricQN) group.

The main group has no parameters of its own.

4 Electronic loop

4.1 scfDiag: iterative diagonalization + density mixing
The scfDiag group selects and controls the iterative diagonalization + density
mixing algorithm for the solution of the Kohn-Sham DFT equations.

Example:

22

�
scfDiag {

blockCCG { blockSize=32; maxStepsCCG=4; }
dEnergy = 1e−7;
preconditioner { type=KERKER; scaling=1;

kerkerDamping=1; }
mixingMethod = PULAY;
nPulaySteps = 7 ;

}
� �
The group must contain one of the iterative diagonalization groups: CCG

(conjugate-gradient3), blockCCG (block conjugate-gradient, recommended). It
may contain a xcMesh group (to override the xc mesh) and a preconditioner
group (for the density). If the density preconditioner is not specified, Kerker
preconditioning with a default damping is used.

The following parameters may be set:
3The first C stands for Complex.

23

parameter description
dEnergy (optional) Free energy convergence criterium (in

Hartree). Default is 10−8.
maxSteps (optional) Max. number of steps (density updates).
maxResidue (optional) Additional requirement for convergence: den-

sity residue must fall below this threshold.
printSteps (optional) Eigenvalues are printed by default every 10

steps. This interval can be changed by printSteps.
mixingMethod (optional) Method for the density mixing. Constants

defined in parameters.sx. Can be PULAY (default, 2)
or LINEAR (0).

nPulaySteps (optional) Number of previous steps (densities) to use
in Pulay mixing. Default: 7.

rhoMixing (optional) Additional linear mixing factor for density
updates (1=full update (default), 0=no change). Low
values may lead to a more stable convergence, but will
slow down the calculation if set too low.

spinMixing (optional) Linear mixing parameter for spin densities.
keepRhoFixed (flag) Do not update the density (for band structures).
keepOccFixed (flag) Do not update the occupation numbers.
keepSpinFixed (flag) Do not change the spin moment.
spinMoment (optional) Keep the spin moment at this value.
ekt (optional) Override electronic temperature setting in

the Hamiltonian group.
dipoleCorrection (flag) Override the dipole correction setting in the

Hamiltonian group.
dSpinMoment accuracy of iterative enforcement of spin constraints.

Default: 10−8.
noRhoStorage (flag) Do not write rho.sxb.
noWavesStorage (flag) Do not write waves.sxb

Multiple iterative diagonalizer groups may be used to change the xc mesh
during the minimization. For this, each diagonalizer groups must contain the
dEnergy parameter. Example:�
scfDiag {

blockCCG { xcMesh { meshAccuracy=0.7; }
dEnergy=1e−4; }

blockCCG { xcMesh { meshAccuracy=1; }
dEnergy=1e−8; }

blockCCG { xcMesh { meshAccuracy=2; }
dEnergy=1e−9; }

dEnergy=1e−9;
}
� �

This example would use an xc-mesh with a relative accuracy of 0.7 until the
energy has converged to 10−4 Hartree, a standard 2× mesh (accuracy=1) until

24

the energy change is below 10−8 Hartree, and a double-accuracy mesh thereafter.
The following parameters allow messing around with some details.

parameter description
dRelRes (optional) The energy convergence criterium for eigen-

values is calculated from the density residue adaptively.
This parameter allows to set the initial (and maximum)
value of the scaling factor.

calcForces (flag) Calculate and print forces in each step (slow!).
This can be used to determine the influence of conver-
gence criteria on the precision in forces.

dumpTime (optional) Set interval between dumps of density/wave
functions. The dumps may allow for restarts when a
calculation crashes. Since the dumping happens at the
end of a SCF cycle, the actual dumping intervals may
be longer. Default: 12 hours.

4.1.1 The CCG group

The CCG group (within the scfDiag group) selects conjugate-gradient algorithm
for (inner-loop) iterative diagonalization. After all states have been updated, a
subspace diagonalization is performed. This algorithm works best for very small
systems. For larger systems (> 5 states), the blockCCG is superior.

Note: CCG is also the name for the conjugate-gradient-based direct mini-
mization algorithm, see Sec. 4.2.

The following parameters may be set:
parameter description
dRelEps (optional) Stop iterating when the change in eigen-

value falls below this fraction of the change in the first
(steepest-descent) step.

maxStepsCCG (optional) Max. number of steps to perform. Default:
5.

dEnergy (optional) Use these settings until energy change fall
below this threshold.

The CCG group may contain a xcMesh group to override the xc mesh settings
from the Hamiltonian or the scfDiag group.

4.1.2 The blockCCG group

The blockCCG group (within the scfDiag group) selects the block conjugate-
gradient algorithm for (inner-loop) iterative diagonalization. After all states
have been updated, a subspace diagonalization is performed. For very small
systems (≤5 states), the unblocked CCG is superior.

The following parameters may be set:

25

parameter description
dRelEps (optional) Stop iterating when the change in eigen-

value falls below this fraction of the change in the first
(steepest-descent) step.

maxStepsCCG (optional) Max. number of steps to perform. Default:
5.

blockSize (optional) Block size. Default: 64
nSloppy (optional) Don’t try to converge the highest nSloppy

states (useful for bandstructures).
dEnergy (optional) Use these settings until energy change fall

below this threshold.
verbose (flag) Produce debug output.
numericalLimit (flag) Stop iterating when approaching the numerical

limit.

The blockCCG group may contain a xcMesh group to override the keyxc mesh
settings from the Hamiltonian or the scfDiag group.

4.1.3 The preconditioner group

The preconditioner group defines the density preconditioner, i.e., a transfor-
mation of the observed (or predicted) difference between the input and output
density to the applied changes to the input density. An ideal preconditioner
models the screening behavior of the system and is able to include the expected
screening response into the suggested density change. Selecting an appropriate
preconditioner, that reflects the screening properties of the system at hand, is
a key to an efficient (i.e. fast) convergence. The preconditioner does not affect
the converged result.

The following parameters may be set:
parameter description
type (required) Type of preconditioner, see below
scaling (optional) Additional scaling factor. Default 1.
spinScaling (optional) Additional scaling factor for the spin density.

Default 1.
kerkerDamping (optional) Damping constant for Kerker preconditioner.

Default: 0.6
dielecConstant (optional) Dielectric constant for the CSRB model.

The following preconditioner types are available (constants defined in parameters.sx).

• NONE (0). No preconditioning. Ideal for atoms/molecules in vacuum.

• KERKER (1). Kerker preconditioner. Ideal for metals.

• CSRB (3). Preconditioner for semiconductors based on the Cappellini-del-
Sole-Reining-Bechstedt model dielectric function. Requires dielecConstant.

• ELLIPTIC (5). An explicit-solver preconditioner. No screening in vacuum
region, Thomas-Fermi screening (Kerker-like) elsewhere. Ideal for metallic

26

slabs.

4.2 CCG: direct minimization
The CCG group selects and controls the direct minimization algorithm for the
solution of the Kohn-Sham DFT equations [2].

Example:�
CCG {

dEnergy=1e−7;
f i n a lD i ag ;

}
� �
It may contain a xcMesh group to override the xc mesh settings from the

Hamiltonian group.
The following parameters may be set:
parameter description
dEnergy (optional) Free energy convergence criterium (in

Hartree). Default is 10−8.
maxSteps (optional) Max. number of steps.
printSteps (optional) Eigenvalues are printed by default every 10

steps. This interval can be changed by printSteps.
initialDiag (flag) Perform iterative wave-function optimization

based on the initial density (this is the default)
finalDiag (flag) Perform subspace diagonalization at the end.
kappa (optional) Initial mixing between subspace Hamiltonian

and wave-function updates. If set to a negative value,
the value of κ will be fixed at the absolute value. Oth-
erwise, κ is adapted on the fly.

keepOccFixed (flag) Do not update the occupation numbers.
ekt (optional) Override electronic temperature setting in

the Hamiltonian group.
dipoleCorrection (flag) Override the dipole correction setting in the

Hamiltonian group.
noRhoStorage (flag) Do not write rho.sxb.
noWavesStorage (flag) Do not write waves.sxb

Note about switching between scfDiag and CCG: The direct minimiza-
tion algorithm requires a good initial guess for the wave functions. Therefore,
the default is to run a iterative diagonalization (blockCGG algorithm) before
starting direct minimization. This is unnecessary when the wavefunctions come
from iterative diagonalization, and can be switched off via the initialDiag flag.
For semiconductors with no empty states, on the other hand, the wavefunctions
spanning the occupied subspace may not be diagonalizing the Hamiltonian. In
order to switch to scfDiag or to obtain eigenvalues, the finalDiag flag must

27

be set. If partially occupied or empty states are computed, an approximate
diagonalization takes place as part of the algorithm.

5 Geometry optimizers
This section describes the geometry optimization groups. We have experimented
with geometry optimization and found BFGS quasi-Newton schemes to be most
efficient. Therefore, you will see three quasi-Newton optimizers. For small
systems, the performance is quite similar. For more complex systems, the ricQN
variant is recommended.

In addition to the geometry optimizers, there is a pseudo-optimizer extControl.
This algorithm opens two communication channels (named pipes) and allows to
control geometry updates (and other things) from external scripts.

In all cases, the inner electronic loop enjoys the same flexibility of sequenc-
ing as the main group. Therefore, each geometry optimizer group contains a
bornOppenheimer group that contains one or more electronic minimizers.

5.1 The QN group
The QN group selects and controls the geometry optimization via quasi-Newton
scheme with BFGS updates. Note: In general, ricQN is the faster algorithm.

Example:�
QN {

maxSteps = 20 ;
dEnergy = 1e−5;
dF = 1e−3;
maxStepLength=0.2;
bornOppenheimer {

scfDiag {
maxSteps = 50 ;
blockCCG { }
dEnergy = 1e−7;

}
}

}
� �
The group must contain a bornOppenheimer group to specify the electronic

loop.
The following parameters may be set:

28

parameter description
maxSteps (optional) max. number of steps, default: 50
dX (optional) convergence reached only when maximum

displacement (length of displacement vector of a single
atom) is less than this value (in bohr). Default: 0.01

dF (optional) convergence reached only when maximum
force (length of force vector of a single atom) is less
than this value (in Hartree/bohr). Default: 0.001

dEnergy (optional) convergence reached only when change in en-
ergy is less than this value (in Hartree). Default: 10−4

maxStepLength maximum allowed displacement (length of displacement
vector for a single atom) in bohr. Larger steps are re-
duced by scaling. Default: 0.3

hessian (filename) Initialize Hessian from file.
driftFilter (flag) Project out the average force and displacement.

Default: yes, if no constraints are used.

5.1.1 The bornOppenheimer group

The bornOppenheimer group defines the electronic loop within a geometry op-
timization. It contains one or more of the electronic loop groups, see Sec. 4.
If more than one minimizer is used, the complete electronic loop sequence is
executed at each ionic step.

5.2 The linQN group
The linQN group selects and controls the geometry optimization via quasi-
Newton scheme with BFGS updates for the inverse Hessian. Note: In general,
ricQN is the faster algorithm.

Example:�
linQN {

maxSteps = 20 ;
dEnergy = 1e−5;
dF = 1e−3;
maxStepLength=0.2;
bornOppenheimer {

scfDiag {
maxSteps = 50 ;
blockCCG { }
dEnergy = 1e−7;

}
}

}
� �

29

The group must contain a bornOppenheimer group to specify the electronic
loop.

The following parameters may be set:
parameter description
maxSteps (optional) max. number of steps, default: 50
dX (optional) convergence reached only when maximum

displacement (length of displacement vector of a single
atom) is less than this value (in bohr). Default: 0.01

dF (optional) convergence reached only when maximum
force (length of force vector of a single atom) is less
than this value (in Hartree/bohr). Default: 0.001

dEnergy (optional) convergence reached only when change in en-
ergy is less than this value (in Hartree). Default: 10−4

maxStepLength maximum allowed displacement (length of displacement
vector for a single atom) in bohr. Larger steps are re-
duced by scaling. Default: 0.3

nProjectors (optional) number of previous steps to use for BFGS
updates. Default: 10

hessian (filename) Initialize Hessian from file.
driftFilter (flag) Project out the average force and displacement.

Default: yes, if no constraints are used.

5.3 The ricQN group
The ricQN group requests a quasi-Newton optimization with BFGS updates [3]
of an on-the-fly optimized internal-coordinate based initial guess for the Hessian.

The following parameters may be set:

30

parameter description
maxSteps (optional) max. number of steps, default: 50
dX (optional) convergence reached only when maximum

displacement (length of displacement vector of a single
atom) is less than this value (in bohr). Default: 0.01

dF (optional) convergence reached only when maximum
force (length of force vector of a single atom) is less
than this value (in Hartree/bohr). Default: 0.001

dEnergy (optional) convergence reached only when change in en-
ergy is less than this value (in Hartree). Default: 10−4

nProjectors (optional) number of previous steps to use for BFGS
updates. Default: 10

maxStepLength maximum allowed displacement (length of displacement
vector for a single atom) in bohr. Larger steps are re-
duced by the trust radius method to a value close to the
maximum (within 1%). Default: 0.3

softModeDamping (optional) Initial value for Hessian shift (in
Hartree/bohr2). This is overriden with the first
successful fit of a positive shift parameter. Default:
1e-2.

driftFilter (flag) Project out the average force and displacement.
Default: yes, if no constraints are used.

The group must contain a bornOppenheimer group to specify the electronic
loop. The ricQN group may contain a ric group (see Sec. 5.3.1 to define the
internal coordinate generation. If left out, default parameters are used, and
output from the internal coordinate setup is suppressed.

5.3.1 The ric group

The ric group defines the parameters for internal coordinate generation.
The following parameters may be set:

31

parameter description
maxDist maximum possible distance for considering neighbors (in

bohr). Default: 10
typifyThreshold minimum bond length separation of distinct bond types

(the f parameter in [3]). After sorting the bond
lengthes, the logarithm of subsequent lengthes are com-
pared. If they differ by less than the threshold, the two
bonds are assigned the same bond type. Default: 0.05

rmsThreshold minimum distance between two bond length clusters in
units of their root-mean-square displacements (the R
parameter of [3]). Default: 3

planeCutLimit Relative size of coordination polyhedra to separate the
nearest neighbors from further atoms (the P parameter
of [3]). Larger values allow for more neighbors. Default:
0.95

withAngles (flag) add bond angle coordinates for all bonds
bvkAtoms (optional, experimental) List of atom ids (starting from

1) for which born-von-Karman transversal force con-
stants are added. The comma-separated list must be
enclosed by square brackets []. This adds a bond-
directional coordinate to each bond of the atoms in the
list.

5.4 The extControl group
The extControl group allows to control parts of the SPHInX run by external
scripts. For this, two communication channels are opened. Typically, these will
be named pipes. For more info on the concept, see he extControl group is the
‘DFT code’ side of the atomic structure algorithm protocol (ASAP).

The names of the communication files are specified via the environment, in
SX_EXT_CTRL and SX_EXT_RES, respectively.

The group must contain one or more bornOppenheimer groups. Each bornOppenheimer
group may contain an id parameter than allows to run the specified sequence
of electronic minimizers (usually one) with the run command (see below).

If forces are not needed, the noForces flag can be used to suppress the
calculation of forces.

The extControl algorithm understands the following commands:

32

https://sxrepo.mpie.de/attachments/download/12/sxextopt-manual.pdf#..T

command description
confirm y Confirm ASAP commands
confirm n Do not confirm ASAP commands
end End the calculation
run [<id>] Run specified bornOppenheimer group (first one, if

<id> is omitted).
onproblem=crash Crash on wrong commands
onproblem=stop Stop on wrong commands
onproblem=ignore Ignore wrong commands (default)
get energy Print free energy on result channel
get forces Print forces on result channel
get natoms Print number of atoms on result channel
get nspecies Print number of species, and for each species number of

atoms on result channel
get structure Print atomic coordinates on result channel
get positions Print atomic coordinates + chemical symbol on result

channel
get cell Print unit cell on result channel
set structure Set atomic coordinates
set positions Set atomic coordinates
shift atom <id> <dx> <dy> dz>

shift specified atom. id starts at 1 and enumerates atoms
across all species.

set cell not supported
get stress not supported
get elements Print chemical symbols on result channel
get nspinconstraints Print number of spin constraints on result channel
get nu Print spin constraint Langrange parameters on result

channel
set spinconstraint Set target spins for spin constraints
get spinconstraint Print target spins for spin constraints on result channel
get atom spin Print atomic spins on result channel
enable spinconstraint Switch on spin constraint
disable spinconstraint Switch off spin constraint

6 Output

6.1 energy.dat: total energies
This file lists the total energies in each electronic step. The format for scfDiag
is

<step> <accumulated time> <total energy> <band energy>

Units are Hartree.
Note: The energy printed is the finite-temperature total energy, not the

free energy and not the T=0K extrapolated one.

33

The format for CCG is

<step> <accumulated time> <total energy> <free energy>

Units are Hartree.

6.2 residue.dat: density residues
This file contains the density residue for each electronic step. The format is

<step> <residue>

For spin-polarized calculations, the third column lists the residue of the spin
density.

6.3 eps.dat: eigenvalues
This file contains the computed eigenvalues. The format is

<ik> <eps_1> <eps_2> <eps_3> ...

Units are eV.

6.4 rho.sxb: density (binary)
This file contains the final density in netcdf-format. The mesh order is z running
fastest. For details on how to interpret the variables, please contact me.

6.5 waves.sxb: wave functions (binary)
This file contains the final wave functions in netcdf-format. It’s pointless to try
to process this file outside the SPHInX library. Several add-ons are available
for processing the wavefunctions.

6.6 relaxedStr.sx: final atomic structure
This file list the final atomic positions in SPHInX format. If the optimization
does not converge, it contains the last configuration calculated.

6.7 relaxHist.sx: geometry optimization history
This file lists for each calculated configuration the atomic positions and forces,
in SPHInX format.

6.8 energy-structOpt.dat: geometry optimization energies
This file lists for each step the energy. The format is one step per line:

<it> <energy (in Hartree)>

The 0-th step is the initial structure.

34

6.9 fftwisdom.dat: FFTW plans
FFTW wisdom file. May be used to speed up FFTW planning in add-ons.

References
[1] J. Neugebauer and C. G. Van de Walle, in Materials Theory, Simulations,

and Parallel Algorithms, MRS Symposia Proceedings, edited by E. Kaxiras,
J. Joannopoulos, P. Vashisha, and R. K. Kalia (MRS, Pittsburgh, 1996),
vol. 408.

[2] J. N. C. Freysoldt, S. Boeck, Phys. Rev. B 79, 241103(R) (2009).

[3] C. Freysoldt, Comp. Mat. Sci. 133, 71 (2017).

35

Index
alphaHybrid, 13
angular grid, 12
angularGrid, 12
ASAP, 32
atom, 8

definition, 8
atomic positions, 6–8
atomic structure, 6
atomic structure algorithm protocol, 32
atomicOrbitals, 17
atomicRhoOcc, 20
atomicSpin, 14, 17

definition, 17

band structure path, 10
basis, 6, 14

definition, 9
beta, 18
blockCCG, 14, 23, 25

definition, 25
blockSize, 26
bornOppenheimer, 22, 28, 30–32

definition, 29
bvkAtoms, 32

calcForces, 25
CCG, 14, 22, 23, 25, 34

definition, 25, 27
charge, 13, 18, 21
charge, 18
charged, 13, 17, 21

definition, 18
checkOverlap, 12
chemical element, 12, 20
comment, 4
conjugate-gradient, 25
constraint, 15
convergence, 29–31

density residue, 24
energy, 16, 24, 27

coords, 8, 10, 11, 18
CSRB, 26
cutoff, 10

dampingMass, 20
dEnergy, 16, 24–27, 29–31
density preconditioner, 26
dF, 29–31
diagonalization, 22, 23, 25
dielecConstant, 26
dipole correction, 13, 21, 24
dipoleCorrection, 13, 21, 24, 27
direct minimization, 27
dK, 11
dRelEps, 25, 26
dRelRes, 25
driftFilter, 29–31
dSpinMoment, 24
dumping interval, 25
dumpTime, 25
dX, 29–31

eCut, 10, 14
ekt, 13, 21, 24, 27
electric field, 13
electronic minimizer, 22
electronic temperature, 24, 27
element, 12, 20
element, 8, 12, 20
empty states, 13, 21
energy convergence, 16, 24, 27
energy-structOpt.dat, 34
energy.dat, 33
eps.dat, 34
exchange, 16

definition, 19
extControl, 28

definition, 32
external potential, 14

Fermi-Dirac smearing, 13, 21
FFT mesh, 9, 10, 14

xc computation, 14
fftwisdom.dat, 35
file, 14–17, 19
finalDiag, 27
flag, 4

36

focc, 19
folding, 10
format, 5
from, 10, 11

definition, 11
fromWaves, 17
functional, 13, 20

gCut, 10
geometry

input, 6
optimization, 28

hessian, 29, 30

id, 32
initial guess, 15
initialDiag, 27
initialGuess, 6, 13, 14, 16–18, 21

definition, 15
input file, 3

comment, 4
expression, 5
flag, 4
format, 4

internal coordinate, 31
ionicMass, 20

kappa, 27
keepOccFixed, 24, 27
keepRhoFixed, 24
keepSpinFixed, 24
keepWavesOnDisk, 16
Kerker, 26
kerkerDamping, 26
kPoint, 9

definition, 10
kPoints, 9, 11

definition, 10

label, 8, 11, 15, 17
LCAO, 15, 16, 19
lcao, 16

definition, 16
lcaoOrbitals, 20
LDA, 13, 21
linQN, 22

definition, 29
lLoc, 20
lMax, 20
lMaxRho, 12

main, 6, 28
definition, 21

maxDist, 32
maxResidue, 24
maxStepLength, 29–31
maxSteps, 16, 24, 27, 29–31
maxStepsCCG, 25, 26
memory

save, 10, 15
mesh, 10, 14
meshAccuracy, 10, 14
mixer, 16
mixing, 24
mixingMethod, 24
Monkhorst-Pack, 9, 10
movable, 7, 8
movableLine, 8
movableX, 7, 8
movableY, 7, 8
movableZ, 7, 8

name, 12, 20
nEmptyStates, 13, 21
nExcessElectrons, 13, 21
noForces, 32
noRhoStorage, 16, 24, 27
norm-conserving pseudopotentials, 19
noWavesStorage, 16, 24, 27
nPoints, 11
nProjectors, 30, 31
nPulaySteps, 24
nRadGrid, 12
nSloppy, 26
numericalLimit, 26

occupation, 18
fixed, 24, 27

occupations
definition, 18

omegaHSE, 13
operator, 9

37

parameter.sx
location, 5

parameters.sx, 5, 13, 20, 21, 24, 26
PAW potentials, 12
PAWHamiltonian, 6, 14, 18

definition, 13
pawPot, 6

definition, 12
PBE, 13, 21
plane-wave basis, 9
plane-wave cutoff, 10
planeCutLimit, 32
potential

norm-conserving, 19
potential, 12, 20
potType, 12
preconditioner, 26
preconditioner, 16, 23

definition, 26
printSteps, 24, 27
pseudoPot, 6

definition, 19
Pulay mixing, 24
PWHamiltonian, 6, 14, 18, 19

definition, 20

QN, 22
definition, 28

radial grid, 12
RAM

save, 10, 15
random, 16, 17
range, 19
range limits, 5
reciprocalMass, 20
relative, 8, 10, 11
relaxedStr.sx, 34
relaxHist.sx, 34
residue.dat, 34
rGauss, 20
rho, 15, 17, 18

definition, 16
rho.sxb, 24, 27, 34
rhoMixing, 24
ric, 31

definition, 31
ricQN, 22, 28, 29

definition, 30
rmsThreshold, 32

S, 9
saveMemory, 10
scaling, 26
scfDiag, 14, 16, 22, 25–27, 33

definition, 22
slab, 13, 21
softModeDamping, 31
species, 7, 12, 20

definition, 7
spin, 13

fixed, 24
spin, 17
spin configuration, 17
spin constraints, 14, 24
spin polarization, 17
spin-polarized, 13, 21
spinConstraint

definition, 14
spinMixing, 24
spinMoment, 17, 24
spinPolarized, 13, 21
spinScaling, 26
std, 5
steps, 24, 27
structure, 6, 12

definition, 6
subspace diagonalization, 25, 27
SX_EXT_CTRL, 32
SX_EXT_RES, 32
symmetry, 7

definition, 8
symmetry group, 9

to, 10, 11
definition, 11

type, 26
typifyThreshold, 32

units, 3

valenceCharge, 20

38

values, 19
verbose, 26
vExt, 14, 21

definition, 14

waves, 15, 16
definition, 16

waves.sxb, 24, 27, 34
weight, 10
withAngles, 32

xc, 13, 21
xc functional, 13, 21
xc mesh, 23, 25, 27
xcMesh, 14, 21, 23, 25–27

definition, 14

z, 18
zField, 13, 21

39

	Introduction
	About
	sphinx invocation
	Units

	The SPHInX parser
	Overview
	Expressions
	Included files
	The format statement. std files.

	Overview on the input file for DFT calculations
	The structure group
	The species group
	The atom group
	symmetry group

	The basis group
	The kPoint group
	The kPoints group
	The from group
	The to group

	The pawPot group
	The PAWHamiltonian group
	The vExt group
	The xcMesh group

	The spinConstraint group
	The initialGuess group
	The waves group
	The lcao group
	The rho group
	The atomicSpin group
	The charged group
	The occupations group
	The exchange group

	The pseudoPot group
	The PWHamiltonian group
	The main group

	Electronic loop
	scfDiag: iterative diagonalization + density mixing
	The CCG group
	The blockCCG group
	The preconditioner group

	CCG: direct minimization

	Geometry optimizers
	The QN group
	The bornOppenheimer group

	The linQN group
	The ricQN group
	The ric group

	The extControl group

	Output
	energy.dat: total energies
	residue.dat: density residues
	eps.dat: eigenvalues
	rho.sxb: density (binary)
	waves.sxb: wave functions (binary)
	relaxedStr.sx: final atomic structure
	relaxHist.sx: geometry optimization history
	energy-structOpt.dat: geometry optimization energies
	fftwisdom.dat: FFTW plans

	Index

